This page is useful for finishing assignment #4; specifically the following demonstrates how to draw a circle that has a center that is "offset" from (0,0).

This first program,	below,	draws two overla	pping circle	es; one of t	he circles	has a center	er that i	s located a	t (0,0),	the other	' at
(50,50):											

go to x: X + 50 y: Y + 50
change X by 1 pen down
set XT to radius2 repeat (radius2 * 2 + 1)
set Y to -1 * abs of sqrt of radius2 * radius2 - x * x
go to x: X + 50 y: Y + 50 change X by -1

Sample run:

Notes:

1. The easiest way to handle drawing a circle whose center is not at (0,0) is to simply offset x and y when plotting the circle as shown above, specifically:

pen up repeat (radius2)* 2	
set Y to sqrt of radius2 * radius2 - x *	
go to x: 🗙 + 50 y: 💙 + 50	
change X by 1	
pen down	

Compare the code fragment above that draws a circle with center at (50,50) versus the code fragment below, where the center of the circle is at (0,0):

Specifically note that the "go to x: (X + 50) y: (y + 50)" differs from the code directly above where the command is simply "go to x: x y: y"; put another way, the center of the smaller circle has a center of (50,50), hence the addition of 50 to both x and y.