


```
y ving transistors, baiciclogic ciruuits can be constructed, including:
```


Equivalent Symbols (note that the circle ater the larger image denotes NOT):

There is as signiciant amount of detalal left a tull-up Central Processing Unit (CPN)

NaND gates are frequently used in the "teal-world" as most gatesclircuits can be constructed from NAND gates.
please see below"

	Gate	Equivalentin NANO gates
nот		$-5-$
$10 \text {. }$		
	$\sum 0$	

Packaging of four, two-input, NAND gates on an Integrated Circuit (IC)

From these very basic logic circuits, more complex circuitry can be created, in this case a Hall-Adder

Truth Table:

J	K	Clk	Q	Q_bar
0	0	Pos-edge	No change	
0	1	Pos-edge	0	1
1	0	Pos-edge	1	0
1	1	Pos-edge	Toggle	

Timing Diggran

Asic strucurue of a Central Processing Unit (CPP):
ALU - Arithmeicic Logic Unit

Example CPUs:

Intel 8088
Intel ir

Motorolal 6152
Motorola 68000
PowerpC 603 e
PowerPC G4
ARM AB-Cortex
ARM AA $($ PA sem

Sample (High-End) Computer Architecture (Apple Mac Pro) includes two CPUs and up to 12 cores:

Closing Notes:

1. Fip--tiops can be used to creaete registers that change over time using a clock, which in turn supporss a change of state.
2. There are many, many, many details that have been onited forb brevity, many of which are covered in later computer
science courses,

The IC solved the Tyranny of Numbers problem, which in short is:
'For some time now, electronic man has known how 'in principile' to extend greaty his visual, tactile, and
nental abilities through the digital transmission and processing of all kinds of information. However. all
 complex diị
devices."
.A. Morton, Bell Laboratory
Morton was a vice president at the famed Bell Laboratories, and the quote above is taken from an article
he wrote celebrating the 10th anniversary of the invention of the transistor. At this time, man was at the point that he has reached so many times: on the brink of a revolution, in need of a visionary to set the
pall roling. Just as chemistry and physics were thoughto be almost complete until Heisenberg and Bohts all roling. Just as chemistry and physics were thought to be almost complete untiti hisenberg and ion ts
work transformed them completely, the world of electronics had reached a standstill. Ten years earier, the Tansistor had seemed tor reperesent the breakthroutht that was needed. Rather than wasting satat anounts of space with vacuum tubes, engineers co
unctions in a small fraction of the space.
Unfortunately, there was not yet any way of minimizing the size of other components. Resistors, As a ressult, any large circuit was almost impossible to create, and even more difficult to mass produce.
 druits to perform elaborate functions, but because of the tyranny of numbers, they were unable to be but it was Texas Instruments who had the first breakthrough
n electrical engineer named Jack S . Kilby was the first to solve the problem, in what became known as
he monoithic idea. He was the first to propose the integrated circuit, although Robert Noyce proposed a simiar design indeendenentily a short time later. It was these two innovators who are responsible for eve Sources:
http://en,wikipedia.org/wiki/Tyranny of numbers
http://everything2.com/titie/The\% 2520 Tyranny\% 2520 offo 2520 Numbers
The Chio by T. R. Reid; Publisher: Random House; Copyright: 1985, 2001; ISBN: 0-375--58828-3

